If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+6a-108=0
a = 2; b = 6; c = -108;
Δ = b2-4ac
Δ = 62-4·2·(-108)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-30}{2*2}=\frac{-36}{4} =-9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+30}{2*2}=\frac{24}{4} =6 $
| -3=2+n/2 | | (D^4-49)y=0 | | 11y-14=-10y | | 4+4v=12 | | (8(11.25-0.25y)+3y)+(8(11.25-0.25y)+y)=180 | | 3x^2+23x+41=0 | | (D^4-49)y=9 | | 6+-3j=15 | | 15-8s=-10s-17 | | -15-17d-20=13-20d | | 0.25(25x+1.5(x-4))=-x | | |n+5|=-12 | | 8-(6-9)=x | | 4=n/9+3 | | 5x–9x–12=-72 | | 11j=-18+12j | | 6(5x+7)=162 | | x^2+2x+x=24 | | 3-3m=-3-2m | | 1=x/5+3 | | -8−2z=-z | | -8-10b=-2b+10-10b | | -2(y+3)=-7y+19 | | 25+0.12p=29.46 | | 5n+1=51 | | -1/3y=-5/24 | | -6-5u=-6u-5 | | -4n-1=-9 | | x=2-2+3-2 | | 6−5u=-6u−5 | | 6p-6=4p+16 | | 2c=8c−6 |